Plasma cutters tips


Posted On Aug 30 2019

Some advices about welding equipment, MIG and TIG welders, plasma cutters. ARC Welding : ARC welding is one of the oldest welding processes around. It uses either an AC or DC power supply to create an electric arc between the welding rod and the workpiece metal to melt the metals and join them together. This style of welding is relatively inexpensive and very portable but it does require some practice to get good consistent welds and the welds will probably require some arc weldercleaning up afterwards. ARC welding is less suited to welding thinner materials but there is a large range of specialist electrodes (welding rods) available for ARC welders depending on what materials you are welding. ARC welding is versatile but more suited to heavier applications.

A few MIG welders tricks: how to become a better welder and how to pick the best welding equipment. For DCEN welding on steels, 1/16″ will work in the 20 to 100 amp rage as long as you prep it right. If you are using 20 amps, you will need a needle sharp point to get good crisp arc starts. At 100 amps, you might not want quite a needle sharp point or you might be putting a smidge of tungsten in the weld. You need a blunter taper. Some charts extend the range to 150 amps for 1/16, but I think that’s way too much. Why not just swap to a 3/32 at that amperage.? 3/32″ is good from about 65 – 200 amps. And 1/8″ 2% thoriated electrodes are good in the 85 – 300 amp range. ( Drop all these numbers by about 30% for A/C) Using helium mixed with the argon will also change the recommended currents because the arc is hotter with the same amps. These recommendations are from down and dirty experience and don’t come from a chart. Most charts I have seen tell you a 1/16 tungsten is good all the way to 150 amps…Please.

Delivery of parts to the welding station in an organized and logical fashion is also a way to reduce welding costs. For example, one company was manufacturing concrete mixing drums. In the fabrication process, the company produced 10 parts for one section, then went on to make 10 parts of another drum section, etc. As pieces came off the line, they were put onto the floor of the shop. When it was time to weld, the operator had to hunt for the pieces needed and sort through them. When the outside welding expert pointed out the amount of time being wasted in this process, the company started to batch each one on a cart. In this way, the pieces needed to weld one drum were stored together and could easily be moved to the welding area. This type of scenario is also true for companies that may outsource parts to a vendor. Though it may cost more to have parts delivered in batches, it may save more in time than having to organize and search through parts to be able to get to the welding stage. How many times each piece is handled in the shop may be an eye-opener to reducing wasted time. To measure such an intangible as this, operators are asked to put a soapstone mark on the piece each time it is touched – some companies are surprised to find out how many times a part is picked up, transported and laid down in the manufacturing process. In the case of one company, moving the welding shop closer to the heat treatment station eliminated four extra times that the part was handled. Basically, handling a part as few times as possible and creating a more efficient production line or work cell will reduce overall costs. Looking for the best TIG Welders? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.

Argon is not the only shielding gas used for TIG welding: Shielding gasses for TIG welding Argon is not the only shielding gas used for TIG welding…just the most common and versatile. Argon will usually get the job done. But there are times when some helium mixed with argon makes a world of difference. Especially if you are using a small inverter TIG welder that is limited to around 200 amps. 100% Argon – is the most often used and coolest gas ..the best all around gas. 75% Argon/25% Helium – even 25% helium will make a big difference when welding aluminum that is thicker than .063″. Anything under .063″ thick and helium is unnecessary. 50/50 argon/helium—awesome for thick aluminum and magnesium 75% Helium/25% Argon – Awesome for thick aluminum castings… puddles really quick and welds cleaner than 100% argon. Also good for welding bronze and pure copper on DCEN.

Flat-Position Welding Increases Welding Speed : It’s common knowledge that welding in a horizontal position will be the easiest and fastest way to weld. A flat position is not as taxing to maintain and the welding puddle will stay in place. Take some time to evaluate each project before beginning in order to make sure the majority of welds can be completed in this position. If a job calls for vertical welding, see this article about vertical welding. Core Wire Feeder Increases TIG Welding Speed: For professional welders hoping to speed up TIG welding, a core wire feeder will add filler metal through an automated process. Watch this video on how it works. This enables welders to work with both hands and to maintain a constant flow of wire into the welding puddle. Ed Craig at the Frabricator writes about the wire feeder process first developed in Europe, saying it is “suitable for all-position welding on materials of any thickness, the process addresses traditional GTAW limitations and can enhance both manual and automated TIG weld quality and productivity.”

Before you get started, conduct online research to see what the best practices are for the specific wire you have or contact a trusted filler metal manufacturer. Doing so not only tells you what the manufacturer’s recommended parameters are for your diameter wire, but also what the proper wire feed speed, amperage and voltage is, along with the most compatible shielding gas. The manufacturer will even tell you what electrode extension or contact-to-work distance (CTWD) is best suited for the particular wire. Keep in mind that if you get too long of a stickout, your weld will be cold, which will drop your amperage and with it the joint penetration. As a general rule of thumb, since less wire stickout typically results in a more stable arc and better low-voltage penetration, the best wire stickout length is generally the shortest one allowable for the application.

All welding requires the application of heat, which melts the metal being welded. With the TIG process, the heat comes from an electric arc that streams between the electrode in a hand-held torch and the metal being welded. The arc and molten metal are shielded by an inert gas, which protects the electrode and base metal from oxidizing. Filler rod is usually added to the puddle of molten metal as the weld progresses. The essence of making a good weld is heat control, which is governed by how you modulate the arc as it streams from the torch. Let’s look at this in detail. Source: https://www.weldingsuppliesdirect.co.uk/.

Last Updated on: September 3rd, 2019 at 11:08 am, by


Written by DuncaG